指数平滑法是一种比较常用的时间序列预测法。其原理是任一期的指数平滑值是本期实际观察值与前一期指数平滑值的加权平均,这种方法融合了新旧价值信息,赋予较新信息更大的权重。
这样做的重要意义是,因为预测上,越接近现在的信息越比较可信,而越远的信息,历史陈旧则可信程度没有那么充足。指数平滑法就是抓住这个特点,赋予最新的数据较高的权重,而其他数据随着时间的增加,其权重也随之降低。
一般来说,当时间序列数据呈稳定的水平趋势时,选择较小的α值,为0.05到0.2之间;当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间;当时间序列数据波动很大,长期趋势变化幅度较大,是明显且迅速的上升或下降趋势时,宜选择较大的α值,可在0.6-0.8之间,以使模型灵敏度高些,迅速跟上数据的变化;当时间序列数据是上升(或下降)的发展趋势,a应取较大的值,在0.6-1之间。
比如有以下13期的实际需求数据
通过图例,实际需求还是比较稳定,因此初始α值选择0.2。而第0期的预测值为21054,通过一次指数平滑公式
是t+1期的预测值 是平滑常数,取值在0和1之间,读作Alpha 是t期的实际需求 是t期的预测值得出结果如下:
尽管如此,这个0.2的值是否适合了,凭此计算出的预测值21021,是否也值得可信。
一般来说,为了让选择的α值适合,预测和实际之间的MAPE(Mean Absolute Percentage Error, 平均绝对百分比误差)要达到最优化。
因此,0.2的取值计算得出的MAPE为3.25%
规划求解可以帮忙我们求出适合的α值,让MAPE值最小。
但是规划求解有个缺陷,就是取值只能大于等于0,而指数平滑的α值应为0到1之间,因此规划求解即可取0也可以取值1,就是有点矛盾。当然要解决这个还是有办法的,但是不在本篇讨论中。
先看一下结果。约束计算下,如果α为0的时候,MAPE最小,为3.14%。这个情况下,下一期的预测值为21054。
不过如果初始期预测值为21706的时候,通过规划求解,可以得出MAPE在α值取值0.4左右的时候,为3.51%
那么,这情况下指数α可以考虑取值0.4来计算。从图例来看,取值0.4也比较符合这个特点:当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间。
这是对指数选择的一个不错的方法。
Tracy:绿色不是成本!
6423 阅读靠供应链暴赚、大建冷链物流,年营收77亿的奶茶品牌冲刺IPO
2869 阅读极智嘉冲刺港交所,为全球最大的仓储履约AMR解决方案提供商(附招股书下载)
2747 阅读跃点物流科技获350万美元A+轮融资
2659 阅读顺丰、鲜生活、京东物流、万纬物流、普冷、菜鸟…谁家冷链能在2025实现新突破?
1633 阅读快递停摆风波再起,又是共配惹的祸?
1639 阅读赢在供应链:外包战略的系统性思考
1520 阅读京东物流发布全球织网计划2.0路线图:全面构建海外仓配“2-3日达”时效圈
1357 阅读大胆预测:2025供应链趋势抢先看
1211 阅读像吃大象一样优化物流成本:企业降本增效的系统方法
1199 阅读